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The paper concerns the analysis of reliability of three truss towers performed with the
system approach. The first stage of the reliability analysis involved determination of the
reliability index for trusses while assuming the same reliability of elements. In the second
stage, assessment of the reliability was made according to Eurocodes. The impact of the
wind load probability distribution and connection types in towers on their reliability was
analysed. In the capacity function, the following random variables were taken into account:
cross-sectional area, yield strength, modulus of elasticity, minimum moment of inertia, and
length of the element.
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1. Introduction

Steel truss towers are pin-jointed multi-element self-supporting structures. Towers are characte-
rized by being rigidly fixed to the base. The towers come in a variety of types, the classification
is based, among others, on use (Rykaluk, 2005). In many cases, steel truss towers provide the
best structural option due to many factors, including low material consumption and a simple
erection process. In the design of such structures, reliability assessment is an issue of key im-
portance. The overall level of safety is largely determined by interaction of structural elements
in the load-carrying system, and by safety of individual elements. The issues related to truss
tower failure have been discussed in many papers (Błaszczyński et al., 2014; Paczkowska and
Paczkowski, 2013; Skwarek et al., 2013; Skwarek and Hulimka, 2011; Davies, 2011).
The reliability analysis of truss structures has been dealt with by many researchers. Four

groups of methods can be used for assessing the reliability of a structure: I level (semi-
-probabilistic) methods, II level (approximation and simulation) methods, III level (fully pro-
babilistic) methods and the system approach (serial, parallel and mixed systems). In each of
the methods, a reliability index (Woliński and Wróbel, 2001) is usually employed as a measure
of the overall structural reliability. In (Kamiński and Szafran, 2010), the reliability index of a
steel telecommunication truss tower was determined using a generalized stochastic perturbation
method and the response function technique. In (Dudzik, 2017), the reliability index for an
aluminium truss was determined with the FORM approximation method, and also the Mon-
te Carlo and Importance Sampling simulation methods. The reliability index of an aluminium
truss tower was also determined in (Winkelmann and Oziębło, 2015). The authors used three
different probabilistic methods: the Monte Carlo method, the Point Estimate method and the
Response Surface Method. Of all the reliability methods, the system approach is definitely the
most comprehensive one. The system approach includes both determination of reliability models
and reliability analysis. This type of the reliability analysis was used, among others, in (Bie-
gus, 1977; Thoft-Christensen and Baker, 1982; Woliński and Wróbel, 2001; Park et al., 2004;
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Kłosowska et al., 2017; Kubicka et al., 2019; Mochocki et al., 2018a,b; Mochocki and Radoń,
2019).
In addition to the choice of the reliability analysis method, it is very important to assign

the right type of the probability distribution to the right types of loads. The distribution of the
maximum (or minimum) values is adequate for variable loads such as wind, snow and ice. To
describe some random variables, it is necessary to determine the distribution of extreme values,
e.g. extreme wind load in a given time period. The most often used extreme value distributions
include the Gumbel, the Weibull and the Frechet distributions (Gwóźdź and Machowski, 2011;
Śniady, 2000; Murzewski, 1999; Nowak and Collins, 2000). To carry out the reliability analysis,
it is necessary to replace a given distribution with another one having required characteristics.
For approximation of the distributions, the following are most commonly applied: the Method
of Moments and the Point Collocation Method (Gwóźdź and Machowski, 2011).
The paper reports the reliability analysis of steel truss towers, in which the system approach

was employed. Three types of towers with different topology were discussed. Reliability models
were determined for these structures, and next the reliability analysis was carried out. Two types
of load distribution (normal and Gumbel) were used. In calculations, due to the transformation
from extreme to normal distribution, two approximation methods were applied, namely the
Method of Moments and the Point Collocation Method.

2. Materials and methods

In the paper, the system approach was used to analyse the reliability of steel truss towers. This
method takes into account interaction of individual elements of the whole structure in the load-
-carrying system. The system approach consists of two stages. In the first stage, a reliability
model is defined, and in the second – the reliability index is calculated.

2.1. Reliability model

To define the reliability model, which is the structure eigenvalue, kinematically admissible
failure mechanisms (KAFMs), which contain minimal critical sets of elements (MCSEs), are
specified. Failure of all elements included in the MCSE leads to transformation of the safe
structural system into a mechanism – a system of incomplete fixity. To determine the reliability
model, spectral analysis (Kłosowska et al., 2017; Mochocki et al., 2018b) of the linear stiffness
matrix was used

(KL − λI)q = 0 (2.1)

where KL is the linear stiffness matrix, λ is the eigenvalue and q is the displacement vector. To
identify all possible non-repeatable combinations of removed rods transforming the truss into a
mechanism, a program based on the application of the Finite Element Method was created.

2.2. Reliability of the system

The reliability analysis of the system leads to calculation of the reliability index β, which is
a measure of safety. The reliability index depends on the reliability of the system R, which is
determined for each reliability model applied. For the trusses of concern, three types of reliability
models were obtained, i.e. the serial system, the parallel-serial system and the serial-parallel
system (Fig. 1). The reliability R of these models was calculated as follows:
— for the serial system

R =
k
∏

i=1

Ri (2.2)
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— for the parallel-serial system

R =
m
∏

j=1

[

1−
k
∏

i=1

(1−Rji)
]

(2.3)

— for the serial-parallel system

R = 1−
k
∏

i=1

(

1−
m
∏

j=1

Rji
)

(2.4)

After calculating the reliability of the system, the reliability index was obtained as

β = −Φ−1(1−R) (2.5)

where Φ is the Laplace function.

Fig. 1. Types of reliability models: (a) serial system, (b) parallel-serial system, (c) serial-parallel system

The reliability of system (2.2)-(2.4) depends on the reliability of individual elements Ri
(or Rji), and on the number of system elements k, m or mk (Kubicka et al., 2019; Mochocki
et al., 2018a,b; Mochocki and Radoń, 2019). The first step in the determination of reliability of
individual elements Ri is to determine the expected value µ, standard deviation σ of the load
effect Ei(µEi , σEi) and capacity Ni(µNi , σNi). This is the main part of the reliability analysis.
The way of calculating these parameters is described in Sections 2.2.1 and 2.2.2, respectively.
After computing the load effect and capacity, the standard deviation σZi and the expected
value µZi of the safety margin Zi were calculated

σZi =
√

σ2Ni + σ
2
Ei

µZi = µNi − µEi (2.6)

Finally, the reliability index βi, and next the reliability Ri of a single element were estimated
from the following formulas

βi =
µZi
σZi

Ri = 1− Φ(−βi) (2.7)

2.2.1. Effect of action

The expected value µEi and standard deviation σEi (first and second probabilistic moments)
of the load effect Ei depend on the applied probability distribution of a random variable. To
describe the behaviour of random variables representing structure loads only a few probability
distributions can be used, e.g.: the normal (Gaussian), the log-normal, the Gumbel, the Weibull
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and the Frechet distributions (Gwóźdź and Machowski, 2011; Śniady, 2000; Murzewski, 1999;
Nowak and Collins, 2000).
In the paper, the analysed towers were designed according to the standards (PN-EN

1990:2004; PN-EN 1991-1-4; PN-EN 1993-1-1; PN-EN 1993-3-1). The main loads on these struc-
tures were the permanent load (self-weight), and also the wind load. Probability distributions
for the wind load and for the permanent load differed significantly. To describe the permanent
load, the normal distribution was used. As regards wind, the nature of load needs be taken
into account. The wind load is idealized as a random (stochastic) process. In calculations, it is
necessary to take into account the estimated lifetime of buildings. The characteristic wind load
is determined from basic values of wind velocity or wind pressure. These values are identified
based on long-term measurements taken by weather stations. In the measurement dataset, it is
possible to find values that occurred the most often and very rarely. These empirical data can
be approximated by a probability distribution. The best model used to describe the behaviour
of wind load are the Gumbel, and Frechet and Weibull distributions. In the paper, the Gumbel
distribution was applied.

Fig. 2. Probability density function: (a) normal distribution, (b) Gumbel distribution

The normal distribution is characterized by the following density function

f(x) =
1
σ
√
2π
exp
[

−1
2

(x− µ
σ

)2]

x ∈ (−∞,∞) (2.8)

an example of which is shown in Fig. 2a. Function (2.8) is defined by two parameters, namely
by the mean value

µ =
∞
∫

−∞

xf(x) dx (2.9)

and by the variance

σ2 =
∞
∫

−∞

(x− µ)2f(x) dx (2.10)

The Gumbel distribution is characterized by the following density function (Fig. 2b)

f(x) = α exp{−α(x− u)− exp[−α(x− u)]} x ∈ (−∞,∞) (2.11)

where α, u are parameters of the Gumbel distribution. The mean value and standard deviation
are equal: µ = u+ 0.5772/α and σ = π/2.4495α, respectively.
The method of the reliability analysis selected for the paper required that the normal di-

stribution should be used for all random variables. That made it necessary to transform the
Gumbel distribution into the normal distribution. To achieve that, two approximation methods,
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namely the Method of Moments and the Point Collocation Method were used (Murzewski, 1989;
Gwóźdź and Machowski, 2011).
As regards the two-parameter distributions employed in the paper, the method of probabi-

listic moments is based on the use of conformity conditions of the mean value and the variance.
For the two-parameter distributions A and B, from the conformity conditions of the mean value
and the variance, the following equations were developed

∞
∫

−∞

xfA(x) dx =
∞
∫

−∞

xfB(x) dx
∞
∫

−∞

(x− µA)2fA(x) dx =
∞
∫

−∞

(x− µB)2fB(x) dx (2.12)

To increase accuracy of calculations, the Point Collocation Method can be used. This method is
based on the comparison of the cumulative distribution F (x) and the probability density f(x)
at a properly selected collocation point xd, which can be expressed by the following formulas

fA(xd) = fB(xd) FA(xd) = FB(xd) (2.13)

This method can be used for any two-parameter distributions A and B for two types of the
collocation point xd, i.e. collocation at the central point and collocation at the limit point. In the
paper, the location of the collocation point defines the parameter k. It specifies the probability
that the realization of xd of the variable X will not be exceeded with the probability k. A special
type of the Point Collocation Method is the approach in which the approximating distribution is
always a normal distribution (Rackwitz and Flessler, 1978). This approach is used in the paper.
The relationships between the parameters of the approximating and approximated distribution
have the following form

1
µx
ϕ
(xd − µx
σx

)

= fB(xd) Φ
(xd − µx
σx

)

= FB(xd) (2.14)

where ϕ is the function of the normal standard distribution.
An alternative to the presented analytical methods is provided by the graphical method based

on the use of probabilistic grids (Gwóźdź and Machowski, 2011; Nowak and Collins, 2000).

2.2.2. Effect of capacity

The expected value µNi and standard deviation σNi of the effect of capacity Ni depend
on whether the element is in tension or compression. Generally, the standard deviation of the
capacity is a function of some random variables (Bołotin, 1968; Kubicka and Radoń, 2018)

σNi ≈
√

√

√

√

n
∑

i=1

( ∂f

∂Xi

)2
σ2Xi (2.15)

where f is the function of uncorrelated variables, Xi is the single random variable and n is
the number of variables. In the case of elements under tension, random variables are the cross-
-sectional area A and the yield strength fy. The coefficients of variation for these variables are
6% and 8%, respectively (JCSS, 2001; Gwóźdź and Machowski, 2011). Based on approximation
(2.15), the standard deviation of the capacity is written as

σNt,Rd ≈
√

(∂Nt,Rd
∂A

)2
σ2A +

(∂Nt,Rd
∂fy

)2
σ2fy (2.16)

which gives the following formula

σNt,Rd ≈
√

f2yσ
2
A +A

2σ2fy (2.17)
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In the case of compressed elements, random variables include the cross-sectional area A, yield
strength fy, modulus of elasticity E, minimum moment of inertia Jmin, and element length L.
The respective coefficients of variation for the variables listed above are: 6% for A, Jmin and L,
8% for fy and 5% for E (JCSS, 2001; Gwóźdź and Machowski, 2011). The standard deviation
of capacity (2.15) is written as follows

σNb,Rd ≈
√

(∂Nb,Rd
∂χ

)2
σ2χ +

(∂Nb,Rd
∂A

)2
σ2A +

(∂Nb,Rd
∂fy

)2
σ2fy (2.18)

where χ is the buckling coefficient, and σχ is the standard deviation of the buckling coefficient

σχ ≈
√

( ∂χ

∂A

)2
σ2A +

( ∂χ

∂fy

)2
σ2fy +

( ∂χ

∂E

)2
σ2E +

( ∂χ

∂Jmin

)2
σ2Jmin +

(∂χ

∂L

)2
σ2L (2.19)

3. Results

The paper reports the reliability analysis of steel truss towers, in which the system approach
was used. Three types of towers with different topology were discussed (Fig. 3). The towers had
the same height (h = 16m) and the same number of segments (8 segments), but they differed in
geometry and number of elements le. Reliability models were determined for these structures, and
next the reliability analysis was carried out. For the wind load, two types of distribution (normal
and Gumbel) were used. The impact of connection types and load distributions on the reliability
index was analysed. In calculations, to transform from the extreme to normal distribution,
two approximation methods (Moments and Point Collocation) were applied. Calculations were
carried out using the author-developed programs in the Mathematica environment.
In the first stage, the reliability model was defined. For the first case, tower T1 (Fig. 3a)

(le = 40), the number of KAFMs is 528. They are parallel-serial and serial-parallel mechanisms.
The number of causative elements for MCSEs varies from 2 to 9 (Fig. 4). For tower T2 (Fig. 3b)
(le = 33), the number of KAFMs is also 528. All mechanisms are parallel-serial and the number
of causative elements for all MCSEs is 2 (Fig. 5). The third case, tower T3 (Fig. 3c) (le = 32)
is a statically determinate structure. It is a serial model with 32 causative elements (Fig. 6).
The second stage involved calculation of the reliability index β. The impacts of the reliability

of individual elements and that of the load probability distribution on the reliability index were
analysed. In the first case, the reliability index was calculated assuming the same reliability of
all elements (Ri = R). Three cases of the reliability of individual elements were considered.
The results are shown in Table 1. In the second instance, the towers were designed according to
Eurocodes. In calculations, the normal and Gumbel distribution of the wind load were exam-
ined. The Method of Moments (MoM) and the Point Collocation Method (PCM) were used for
transition from the extreme to normal distribution. The results are shown in Table 2.

Table 1. Reliability index β of trusses depending on the reliability of individual elements

Reliability of
T1 T2 T3

individual elements

R = 0.999 3.881 3.275 1.859
R = 0.9999 4.884 4.405 2.727
R = 0.99999 5.724 5.317 3.414
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Fig. 3. Truss towers: (a) T1, (b) T2, (c) T3

Table 2. Reliability index β of trusses depending on types of load distribution

Load distribution (µ;σ) T1 T2 T3

Normal (27.891; 5.578) 3.896 3.927 2.550

Gumbel (27.891; 5.578) MoM−→ Normal (31.106; 7.154) 3.334 3.256 2.056

Gumbel (27.891; 5.578)
PCM ;k=0.5
−−−−−−→ Normal (26.974; 5.01) 4.083 4.146 2.710

Gumbel (27.891; 5.578)
PCM ;k=0.6
−−−−−−→ Normal (29.69; 5.487) 3.706 3.712 2.396

Gumbel (27.891; 5.578)
PCM ;k=0.75
−−−−−−→ Normal (35.123; 6.412) 2.995 2.870 1.781

Gumbel (27.891; 5.578)
PCM ;k=0.9
−−−−−−→ Normal (45.494; 8.054) 1.800 1.314 0.661
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Fig. 4. Kinematically admissible failure mechanisms for tower T1

4. Conclusions

The system approach is the most comprehensive reliability analysis because it allows taking
into account structural arrangement. With the system approach, two relevant concepts that are
closely related and often equated with each other, namely the reliability model and structural
safety, can be distinguished.
The reliability model can be characterized by the structure eigenvalue which depends on

its geometry and boundary conditions. To define the reliability model, kinematically admissible
failure mechanisms (KAFMs) which contain minimal critical sets of elements (MCSEs) should
be specified. Exhaustion of the capacity of all elements included in the causative MCSE leads
to transformation of the safe structural system into a system of incomplete fixity (mechanism).
Tower T3 is statically determinate. The reliability model for this structure is a serial system.
It should be noted that for such a system, failure of one element is equivalent to failure of
the whole structure. The minimal critical set of elements contains only one element, and the
number of kinematically admissible failure mechanisms is equal to the number of causative
elements. Consequently, Tower 3 is the most unreliable. An increase in the safety of the serial
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Fig. 5. Kinematically admissible failure mechanisms for tower T2

Fig. 6. Kinematically admissible failure mechanisms for tower T3
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system can be obtained by two means, namely by increasing the safety of the weakest element of
the system, or by limiting the number of elements that are linked in series. In the paper, Table 1
shows the increase in the reliability of the structure along with the increase in the reliability of
the elements. Reliability of individual elements change from 0.999 to 0.99999. We assume here
that the reliability of all components is the same. Towers T2 and T1 are statically indeterminate
structures. These structures correspond to the mixed reliability model. Statically indeterminate
structures have many kinematically admissible failure mechanisms, in which common elements
are found. The same elements are components of more than one critical set. Then, estimation
of the safety of the structure is a difficult task that gets even more complex as the numbers of
MCSE and common causative elements increase. As a result, simplified estimation, i.e. the lower
estimate of the structure safety is applied. That involves separation of the minimal critical sets of
elements that have common causative elements. After MCSEs are separated, it can be assumed
that all kinematically admissible failure mechanisms defined for a given structure are connected
to one another in series. In the study, the assumption holds that MCSEs are unseparated. The
reliability models of towers T2 and T1 differ fundamentally. The reliability model of tower T2
contains 528 KAFMs. All mechanisms are parallel-serial, and the number of causative elements
for all MCSEs is 2. The reliability model of the tower T1 contain also 528 KAFMs, but the
number of causative elements for MCSEs ranges from 2 to 9. They are parallel-serial and serial-
-parallel mechanisms. The failure of such a structure is definitely less likely. Tower T1 is the
most reliable structure.
The wind load probability distribution has significant influence on the reliability index. In

the paper, two types of load distribution (normal and Gumbel) were applied. The method of
the reliability analysis selected for the paper required that the normal distribution should be
used for all random variables. That made it necessary to transform the Gumbel distribution
into the normal distribution. To achieve that, two approximation methods, namely the Method
of Moments and the Point Collocation Method were used. The Method of Moments is simpler
and relatively fast allows one to obtain satisfactory results. After transformation of the Gumbel
distribution to the normal distribution the reliability index was reduced to 24%. The Point
Collocation Method is more accurate but more computationally complex and, therefore, also
more time-consuming. In this method, the most important issue is the choice of the parameter k.
In the paper, calculations were performed for four cases of the parameter k (k : 0.5, 0.6, 0.75, 0.9).
In the case of k = 0.5, the reliability index is overestimated compared to values obtained for
the normal distribution, whereas in the case of k = 0.9 is significantly lower (to 286%). Much
more reliable results were obtained for values k = 0.6 and k = 0.75. The advantage of the Point
Collocation Method is the possibility of choosing the value of the parameter k depending on
the design situation (uncertainty of the load model, structures with unusual loads). It allows
obtaining the adequate safety margin.
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